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A key challenge in the design of multi-sensor systems is the efficient allocation
of scarce resources such as bandwidth, CPU cycles, and energy, leading to the
dynamic sensor selection problem in which a subset of the available sensors must
be selected at each timestep. While partially observable Markov decision pro-
cesses (POMDPs) provide a natural decision-theoretic model for this problem,
the computational cost of POMDP planning grows exponentially in the number
of sensors, making it feasible only for small problems. We propose a new POMDP
planning method that uses greedy maximization to greatly improve scalability in
the number of sensors. We show that, under certain conditions, the value function
of a dynamic sensor selection POMDP is submodular and use this result to bound
the error introduced by performing greedy maximization. Experimental results
on a real-world dataset from a multi-camera tracking system in a shopping mall
show it achieves similar performance to existing methods but incurs only a frac-
tion of the computational cost, leading to much better scalability in the number
of cameras. This paper is an extended version of [Satsangi et al., 2015] including
all the proofs and further experimental details that were omitted in the shorter
version.
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1 Introduction

Multi-sensor systems are becoming increasingly prevalent in a wide range of settings. For ex-
ample, multi-camera systems are now routinely used for security, surveillance, and tracking. A
key challenge in the design of such systems is the efficient allocation of scarce resources such as
the bandwidth required to communicate the collected data to a central server, the CPU cycles
required to process that data, and the energy costs of the entire system. This gives rise to the
dynamic sensor selection problem [Spaan and Lima, 2009, Kreucher et al., 2005, Williams et al.,
2007]: selecting, based on the system’s current uncertainty about its environment, K of the N
available sensors to use at each timestep, where K is the maximum number of sensors allowed
given the resource constraints.

When the state of the environment is static, a myopic approach that always selects the
sensors that maximize the immediate expected reduction in uncertainty is typically sufficient.
However, when that state changes over time, a non-myopic approach that reasons about the
long-term effects of the sensor selection performed at each step can perform better. A natural
decision-theoretic model for such an approach is the partially observable Markov decision process
(POMDP) [Aström, 1965, Smallwood and Sondik, 1973, Kaelbling et al., 1998] in which actions
specify different subsets of sensors.

In a typical POMDP, reducing uncertainty about the state is only a means to an end. For
example, in a robot control task, the robot aims to determine its current location so it can more
easily reach its goal. However, dynamic sensor selection is a type of active perception problem
[Spaan, 2008, Spaan and Lima, 2009], which can be seen as a subclass of POMDPs in which
reducing uncertainty is an end in itself. For example, a surveillance system’s goal is typically
just to ascertain the state of its environment, not use that knowledge to achieve another goal.
While perception is arguably always performed to aid decision-making, in an active perception
problem that decision is made by another agent, e.g., a human, not modeled by the POMDP.

Although POMDPs are computationally expensive to solve, approximate methods such as
point-based planners [Pineau et al., 2006, Araya et al., 2010] have made it practical to solve
POMDPs with large state spaces. However, dynamic sensor selection poses a different chal-
lenge: as the number of sensors N grows, the size of the action space

(
N
K

)
grows exponentially.

Consequently, as the number of sensors grows, solving the POMDP even approximately quickly
becomes infeasible with existing methods.

In this paper, we propose a new point-based planning method for dynamic sensor selection
that scales much better with the number of sensors. The main idea is to replace maximiza-
tion with greedy maximization [Nemhauser et al., 1978, Golovin and Krause, 2011, Krause and
Golovin, 2014] in which a subset of sensors is constructed by iteratively adding the sensor that
gives the largest marginal increase in value. Doing so avoids iterating over the entire action
space, yielding enormous computational savings.

In addition, we present theoretical results bounding the error in the value functions computed
by this method. Our core result is that, under certain conditions including submodularity [Krause
and Golovin, 2014, Nemhauser et al., 1978], the value function computed using POMDP backups
based on greedy maximization has bounded error. We also show that such conditions are met,
or approximately met, if reward is defined using negative belief entropy or an approximation
thereof. To our knowledge, these are the first results demonstrating the submodularity of value
functions and bounding the error of greedy maximization in the full POMDP setting.

This is a corrected version of this paper. The original version contained a technical mistake in the proof of
Lemma 5. We would like to thank Csaba Szepesvári for identifying this mistake.
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Finally, we apply our method to a real-life dataset from a multi-camera tracking system
with thirteen cameras installed in a shopping mall. Our empirical results demonstrate that
our approach outperforms a myopic baseline and nearly matches the performance of existing
point-based methods while incurring only a fraction of the computational cost.

2 Background

In this section, we provide background on POMDPs, dynamic sensor selection POMDPs, and
point-based methods.

2.1 POMDPs

A POMDP is a tuple 〈S,A,Ω, T,O,R, b0, γ, h〉. At each timestep, the environment is in a state
s ∈ S, the agent takes an action a ∈ A and receives a reward whose expected value is R(s, a),
and the system transitions to a new state s′ ∈ S according to the transition function T (s, a, s′) =
Pr(s′|s, a). Then, the agent receives an observation z ∈ Ω according to the observation function
O(s′, a, z) = Pr(z|s′, a). The agent can maintain a belief b(s) using Bayes rule. Given b(s) and
R(s, a), the belief-based reward, ρ(b, a) is:

ρ(b, a) =
∑
s

b(s)R(s, a). (1)

A policy π specifies how the agent will act for each belief. The value V π
t (b) of π given t steps to

go until the horizon h is given by the Bellman equation:

V π
t (b) = ρ(b, aπ) + γ

∑
z∈Ω

Pr(z|aπ, b)V π
t−1(bz,aπ). (2)

The action-value function Qπt (b, a) is the value of taking action a and following π thereafter:

Qπt (b, a) = ρ(b, a) + γ
∑
z∈Ω

Pr(z|a, b)V π
t−1(bz,a). (3)

The optimal value function V ∗t (b) is given by the Bellman optimality equation:

V ∗t (b) = max
a

Q∗t (b, a)

= max
a

[ρ(b, a) + γ
∑
z∈Ω

Pr(z|a, b)V ∗t−1(bz,a)].
(4)

We can also define the Bellman optimality operator B∗:

(B∗Vt−1)(b) = max
a

[ρ(b, a) + γ
∑
z∈Ω

Pr(z|a, b)Vt−1(bz,a)], (5)

and write (4) as: V ∗t (b) = (B∗V ∗t−1)(b).

An important consequence of (1) is that V ∗t is piecewise linear and convex (PWLC). This
property, which is exploited by most POMDP planners, allows V ∗t to be represented by a set of
vectors: Γt = {α1, α2 . . . αm}, where each α-vector is an |S|-dimensional hyperplane representing
V ∗t (b) in a bounded region of belief space. The value function can then be written as V ∗t (b) =
maxαi

∑
s b(s)αi(s).
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Figure 1: Tangents approximating negative belief entropy.

2.2 Dynamic Sensor Selection POMDPs

We model the dynamic sensor selection problem as a POMDP in which the agent must choose a
subset of available sensors at each timestep. We assume that all selected sensors must be chosen
simultaneously, i.e., it is not possible within a timestep to condition the choice of one sensor
on the observation generated by another sensor. This corresponds to the common setting in
which generating each sensor’s observation is time consuming, e.g., because it requires applying
expensive computer vision algorithms, and thus all observations must be generated in parallel.
Formally, a dynamic sensor selection POMDP has the following components:

• Actions a = 〈a1 . . . aN 〉 are modeled as vectors of N binary action features, each of which
specifies whether a given sensor is selected or not (assuming N sensors). For each a, we
also define its set equivalent a = {i : ai = 1}, i.e., the set of indices of the selected sensors.
Due to the resource constraints, the set of all actions A = {a : |a| ≤ K} contains only
sensor subsets of size K or less. A+ = {1, . . . , N} indicates the set of all sensors.

• Observations z = 〈z1 . . . zN 〉 are modeled as vectors of N observation features, each of
which specifies the sensor reading obtained by the given sensor. If sensor i is not selected,
then zi = ∅. The set equivalent of z is z = {zi : zi 6= ∅}. To prevent ambiguity about which
sensor generated which observation in z, we assume that, for all i and j, the domains of zi
and zj share only ∅.

• The transition function T (s′, s) = Pr(s′|s) is independent of a because the agent’s role is
purely observational.

• The belief-based reward ρ(b) is also independent of a and is typically some measure of the
agent’s uncertainty. A natural choice is the negative entropy of the belief: ρ(b) = −Hb(s) =∑

s p(s) log(p(s)). However, this definition destroys the PWLC property. Instead, we
approximate −Hb(s) using a set of vectors Γρ = {αρ1, . . . , α

ρ
m}, each of which is a tangent

to −Hb(s), as suggested by [Araya et al., 2010]. Figure 1 shows the tangents for an example
Γρ for a two-state POMDP. Because these tangents provide a PWLC approximation to
belief entropy, the value function is also PWLC and can thus be computed using standard
solvers.
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2.3 Point-Based Value Iteration

Exact POMDP planners [Smallwood and Sondik, 1973, Monahan, 1982, Lovejoy, 1991, Kaelbling
et al., 1998] compute the optimal Γt-sets for all possible belief points. However, this approach is
intractable for all but small POMDPs. By contrast, point-based value iteration (PBVI) [Pineau
et al., 2006] achieves much better scalability by computing the Γt-sets only for a set of sampled
beliefs B, yielding an approximation of V ∗t .

At each iteration, PBVI computes Γt given Γt−1 as follows. The first step is to generate
intermediate Γz,a

t -sets for all a ∈ A and z ∈ Ω: Γz,a
t = {αz,a : α ∈ Γt−1}, where

αz,a(s) = γ
∑
s′∈S

T (s, s′)O(s′, a, z)α(s′).

The next step is to use the intermediate sets to generate sets Γa
t = {αa,b : b ∈ B}, where

αa,b = arg max
αρ∈Γρ

∑
s

b(s)αρ(s) +
∑
z

arg max
αz,a∈Γz,a

t

∑
s

αz,a(s)b(s).

The final step is to find the best vector for each b ∈ B and thus generate Γt. To facilitate expli-
cation of our algorithm in the following section, we describe this final step somewhat differently
than Pineau et al. (2006). For each b ∈ B and a ∈ A we must find the best αa,b ∈ Γa

t :

α∗a,b = arg max
αa,b∈Γa

t

∑
s

αa,b(s)b(s), (6)

and simultaneously record its value: Q(b, a) =
∑

s α
∗
a,b(s)b(s). Then, for each b ∈ B, we find the

best vector across all actions: αb = α∗a∗,b, where

a∗ = arg max
a∈A

Q(b, a). (7)

Finally, Γt is the union of these vectors: Γt = ∪b∈B αb.

3 Greedy PBVI

The computational complexity of one iteration of PBVI is O(|S||A||Γt−1||Ω||B|) [Pineau et al.,
2006]. While this is only linear in |A|, in our setting |A| =

(
N
K

)
. Thus, PBVI’s complexity is

O(|S|
(
N
K

)
|Γt−1||Ω||B|), leading to poor scalability in N , the number of sensors. In this section,

we propose greedy PBVI, a new point-based POMDP planner for dynamic sensor selection whose
complexity is only O(|S||N ||K||Γt−1||Ω||B|), enabling much better scalability in N .

The main idea is to exploit greedy maximization [Nemhauser et al., 1978], an algorithm that
operates on a set function F : 2X → R. Algorithm 1 shows the argmax variant, which constructs
a subset Y ⊆ X of size K by iteratively adding elements of X to Y . At each iteration, it adds
the element, e that maximally increases F (Y ).

Algorithm 1 greedy-argmax(F,X,K)

Y ← ∅
for m = 1 to K do

Y ← Y ∪ {arg maxe∈X\Y F (Y ∪ e)}
end for
return Y

To exploit greedy maximization in PBVI, we need to replace an argmax overA with greedy-argmax.
Our alternative description of PBVI above makes this straightforward: (7) contains such an
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argmax, and Q(b, ·) has been intentionally formulated to be a set function over A+. Thus,
implementing greedy PBVI requires only replacing (7) with:

a∗ = greedy-argmax(Q(b, ·), A+,K). (8)

Note that, since the point of greedy maximization is not to iterate over A, it is crucial that
our implementation does not first compute α∗a,b and Q(b, a) for all a ∈ A, as this would already

introduce an |A| =
(
N
K

)
term into the complexity. Instead, α∗a,b and Q(b, a) are computed on-

the-fly only for the a’s considered by greedy-argmax. Since the complexity of greedy-argmax
is only O(|N ||K|), this yields a complexity for greedy PBVI of only O(|S||N ||K||Γt−1||Ω||B|).
Note also that the αz,a that are generated can be cached because they are not specific to a given
b and can thus be reused.

Greedy maximization can only be exploited by methods that perform explicit maximization
to compute V ∗t . Exact methods that do not perform an explicit maximization and instead
rely on pruning operators, e.g., [Cassandra et al., 1997, Kaelbling et al., 1998], cannot directly
employ greedy maximization. Fortunately, point-based methods, which are fast and effective
approximate solvers, are based on explicit maximization. These methods are thus an ideal
starting point for our approach, and can be easily modified by using greedy-argmax instead of
the regular argmax.

4 Analysis: Bounds given Submodularity

In this section, we present our core theoretical result, which shows that, under certain conditions,
the most important of which is submodularity, the error in the value function computed by
backups based on greedy maximization is bounded. Later sections discuss when reward based
on negative belief entropy or an approximation thereof meets those conditions.

Submodularity is a property of set functions that corresponds to diminishing returns, i.e.,
adding an element to a set increases the value of the set function by a smaller or equal amount
than adding that same element to a subset. In our notation, this is formalized as follows. The
set function Qπt (b, a) is submodular in a, if for every aM ⊆ aN ⊆ A+ and ae ∈ A+ \ aN ,

∆Qb(ae|aM ) ≥ ∆Qb(ae|aN ), (9)

where ∆Qb(ae|a) = Qπt (b, a∪{ae})−Qπt (b, a) is the discrete derivative of Qπt (b, a). Equivalently,
Qπt (b, a) is submodular if for every aM , aN ⊆ A+,

Qπt (b, aM ∩ aN ) +Qπt (b, aM ∪ aN ) ≤ Qπt (b, aM ) +Qπt (b, aN ). (10)

Submodularity is an important property because of the following result by Nemhauser
et al. (1978):

Theorem 1. Given any policy π, if Qπt (b, a) is non-negative, monotone and submodular in a,
then for all b,

Qπt (b, aG) ≥ (1− e−1)Qπt (b, a∗), (11)

where aG = greedy-argmax(Qπt (b, ·), A+,K) and a∗ = arg maxa∈AQ
π
t (b, a).

However, Theorem 1 gives a bound only for a single application of greedy-argmax, not for
applying it within each backup, as greedy PBVI does. In this section, we establish such a bound.
Let the greedy Bellman operator BG be:

(BGVt−1)(b) =
G

max
a

[ρ(b, a) + γ
∑
z∈Ω

Pr(z|a, b)Vt−1(bz,a)],

where maxGa refers to greedy maximization. This immediately implies the following corollary to
Theorem 1:
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Corollary 1. Given any policy π, if Qπt (b, a) is non-negative, monotone, and submodular in a,
then for all b,

(BGV π
t−1)(b) ≥ (1− e−1)(B∗V π

t−1)(b). (12)

Proof. From Theorem 1 since (BGV π
t−1)(b) = Qπt (b, aG) and (B∗V π

t−1)(b) = Qπt (b, a∗).

In addition, we can prove that the error in the value function remains bounded after appli-
cation of BG.

Lemma 1. Given a policy π, if for all b, ρ(b) ≥ 0,

V π
t (b) ≥ (1− ε)V ∗t (b), (13)

and Qπt (b, a) is non-negative, monotone, and submodular in a, then, for ε ∈ [0, 1],

(BGV π
t )(b) ≥ (1− e−1)(1− ε)(BGV ∗t )(b). (14)

Proof. Starting from (13) and, for a given a, on both sides adding γ ≥ 0, taking the expectation
over z, and adding ρ(b) (since ρ(b) ≥ 0 and ε ≤ 1):

ρ(b) + γEz|b,a[V
π
t (bz,a)] ≥ (1− ε)(ρ(b) + γEz|b,a[V

∗
t (bz,a)]).

From the definition of Qπt (3), we thus have:

Qπt+1(b, a) ≥ (1− ε)Q∗t+1(b, a) ∀a. (15)

From Theorem 1, we know

Qπt+1(b, aGπ ) ≥ (1− e−1)Qπt+1(b, a∗π), (16)

where aGπ = greedy-argmax(Qπt+1(b, ·), A+,K) and a∗π = arg maxaQ
π
t+1(b, a). SinceQπt+1(b, a∗π) ≥

Qπt+1(b, a) for any a,

Qπt+1(b, aGπ ) ≥ (1− e−1)Qπt+1(b, aG∗ ), (17)

where aG∗ = greedy-argmax(Q∗t (b, ·), A+,K). Finally, (15) implies that Qπt+1(b, aG∗ ) ≥ (1 −
ε)Q∗t+1(b, aG∗ ), so:

Qπt+1(b, aGπ ) ≥ (1− e−1)(1− ε)Q∗t+1(b, aG∗ )

(BGV π
t )(b) ≥ (1− e−1)(1− ε)(BGV ∗t )(b).

Next, we define the greedy Bellman equation: V G
t (b) = (BGV G

t−1)(b), where V G
0 = ρ(b). Note

that V G
t is the true value function obtained by greedy maximization, without any point-based

approximations. Using Corollary 1 and Lemma 1, we can bound the error of V G with respect
to V ∗.

Theorem 2. If for all policies π, Qπt (b, a) is non-negative, monotone and submodular in a, then
for all b,

V G
t (b) ≥ (1− e−1)2tV ∗t (b). (18)

Proof. By induction on t. The base case, t = 0, holds because V G
0 (b) = ρ(b) = V ∗0 (b).

In the inductive step, for all b, we assume that

V G
t−1(b) ≥ (1− e−1)2t−2V ∗t−1(b), (19)

and must show that
V G
t (b) ≥ (1− e−1)2tV ∗t (b). (20)
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Applying Lemma 1 with V π
t = V G

t−1 and (1− ε) = (1− e−1)2t−2 to (19):

(BGV G
t−1)(b) ≥ (1− e−1)2t−2(1− e−1)(BGV ∗t−1)(b)

V G
t (b) ≥ (1− e−1)2t−1(BGV ∗t−1)(b).

Now applying Corollary 1 with V π
t−1 = V ∗t−1:

V G
t (b) ≥ (1− e−1)2t−1(1− e−1)(B∗V ∗t−1)(b)

V G
t (b) ≥ (1− e−1)2tV ∗t (b).

5 Analysis: Submodularity under Belief Entropy

In this section, we show that, when using negative belief entropy as immediate belief-based
reward, i.e., ρ(b) = −Hb(s), then under certain conditions Qπt (b, a) is submodular, non-negative
and monotone, as required by Theorem 2. We start by observing that: Qπt (b, a) = ρ(b) +∑t−1

k=1G
π
k(bt, at), where Gπk(bt, at) is the expected immediate reward with k steps to go, condi-

tioned on the belief and action with t steps to go and assuming policy π is followed after timestep
t:

Gπk(bt, at) = γ(h−k)
∑
zt:k

Pr(zt:k|bt, at, π)(−Hbk(sk)).

where zt:k is a vector of observations received in the interval from t steps to go to k steps to go,
bt is the belief at t steps to go, at is the action taken at t steps to go, and ρ(bk) = −Hbk(sk),
where sk is the state at k steps to go.

Proving that Qπt (b, a) is submodular in a requires three steps. First, we show that Gπk(bt, at)
equals the conditional entropy of bk over sk given zt:k. Second, we show that, under certain
conditions, conditional entropy is a submodular set function. Third, we combine these two
results to show that Qπt (b, a) is submodular.

The conditional entropy [Cover and Thomas, 1991] of a distribution b over s given some
observations z is defined as: Hb(s|z) = −

∑
s

∑
z Pr(s, z) log(b(s|z)). Thus, conditional entropy

is the expected entropy given z has been observed but marginalizing across the values it can
take on.

Lemma 2. If ρ(b) = −Hb(s), then the expected reward at each time step equals the negative
discounted conditional entropy of bk over sk given zt:k:

Gπk(bt, at) = −γ(h−k)(Hbk(sk|zt:k)) ∀ π. (21)

Proof. To prove the above lemma, we take help of some additional notations and definitions,
first we must elaborate on the definition of bk:

bk(sk) , Pr(sk|bt, at, π, zt:k) =
Pr(zt:k, sk|bt, at, π)

Pr(zt:k|bt, at, π)
. (22)

For notational convenience, we also write this as:

bk(sk) ,
Prπbt,at(z

t:k, sk)

Prπbt,at(z
t:k)

. (23)

The entropy of bk is thus:

Hbk(sk) =
∑
sk

Prπbt,at(z
t:k, sk)

Prπbt,at(z
t:k)

log(
Prπbt,at(z

t:k, sk)

Prπbt,at(z
t:k)

), (24)
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and the conditional entropy of bk over sk given zt:k is:

Hbk(sk|zt:k) =
∑
sk

∑
zt:k

Pr πbt,at(z
t:k, sk) log(

Prπbt,at(z
t:k, sk)

Prπbt,at(z
t:k)

).

Then, by definition of Gπk(bt, at),

Gπk(bt, at) = γ(h−k)(−
∑
zt:k

Pr πbt,at(z
t:k)Hbk(sk))

By definition of entropy,

= γ(h−k)
∑
zt:k

Pr πbt,at(z
t:k)

[∑
sk

Prπbt,at(z
t:k, sk)

Prπbt,at(z
t:k)

log(
Prπbt,at(z

t:k, sk)

Prπbt,at(z
t:k)

)

]

= γ(h−k)
∑
zt:k

[∑
sk

Pr πbt,at(z
t:k, sk) log(

Prπbt,at(z
t:k, sk)

Prπbt,at(z
t:k)

)

]

= γ(h−k)
∑
sk

[∑
zt:k

Pr πbt,at(z
t:k, sk) log(

Prπbt,at(z
t:k, sk)

Prπbt,at(z
t:k)

)

]
By definition of conditional entropy,

= γ(h−k)(−Hbk(sk|zt:k)).

(25)

Next, we identify the conditions under which Gπk(bt, at) is submodular in at. We use the set
equivalent z of z since submodularity is a property of set functions. Thus:

Gπk(bt, at) = γ(h−k)(−Hbk(s|zt:k)), (26)

where zt:k is a set of observation features observed between t and k timesteps to go. The
key condition required for submodularity of Gπk(bt, at) is conditional independence [Krause and
Guestrin, 2007].

Definition 1. The observation set z is conditionally independent given s if any pair of obser-
vation features are conditionally independent given the state, i.e.,

Pr(zi, zj |s) = Pr(zi|s) Pr(zj |s), ∀zi, zj ∈ z. (27)

Lemma 3. If z is conditionally independent given s then −H(s|z) is submodular in z, i.e., for
any two observations zM and zN ,

H(s|zM ∪ zN ) +H(s|zM ∩ zN ) ≥ H(s|zM ) +H(s|zN ). (28)
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Proof.

H(s|zM ∪ zN ) +H(s|zM ∩ zN )

By chain rule of entropy,

= H(zM ∪ zN , s) +H(zM ∩ zN , s)−H(zM ∪ zN )−H(zM ∩ zN )

By chain rule of entropy,

= H(zM ∪ zN |s) + 2H(s) +H(zM ∩ zN |s)−H(zM ∩ zN )−H(zM ∪ zN )

Using conditional independence

= H(zM |s) +H(zN |s) + 2H(s) +H(zM ∩ zN |s)−H(zM ∩ zN )−H(zM ∪ zN )

By chain rule of entropy,

= H(zM , s) +H(zN , s) +H(zM ∩ zN |s)−H(zM ∩ zN )−H(zM ∪ zN )

By chain rule of entropy,

= H(s|zM ) +H(s|zN ) +H(zM ∩ zN |s) + [H(zM ) +H(zN )−H(zM ∪ zN )−H(zM ∩ zN )]

Since entropy is submodular & positive [Cover and Thomas, 1991]

= H(s|zM ) +H(s|zN ) + a positive term

(29)

Since the above expression is the right hand side of (28) plus a positive term, then the left hand
side of (28) must be larger.

Lemma 4. If zt:k is conditionally independent given sk and ρ(b) = −Hb(s), then Gπk(bt, at) is
submodular in at ∀ π.

Proof. Let atM and atN be two actions and zt:kM and zt:kN the observations they induce. Then, from
Lemma 2,

Gπk(bt, atM ) = γ(h−k)(−Hbk(sk|zt:kM )) (30)

From Lemma 3,

H(sk|zt:kM ∪ zt:kN ) +H(sk|zt:kM ∩ zt:kN ) ≥ H(sk|zt:kM ) +H(sk|zt:kN )

−H(sk|zt:kM ∪ zt:kN )−H(sk|zt:kM ∩ zt:kN ) ≤ −H(sk|zt:kM )−H(sk|zt:kN )

Gπk(bt, atM ∪ atN ) +Gπk(bt, atN ∩ atM ) ≤ Gπk(bt, atM ) +Gπk(bt, atN ).

(31)

Now we can establish the submodularity of Qπt .

Theorem 3. If zt:k is conditionally independent given sk and ρ(b) = −Hb(s), then Qπt (b, a) =
ρ(b) +

∑t−1
k=1G

π
k(bt, at) is submodular in a, for all π.

Proof. ρ(b) is trivially submodular in a because it is independent of a. Furthermore, Lemma
4 shows that Gπk(bt, at) is submodular in at. Since a positively weighted sum of submodular
functions is also submodular [Krause and Golovin, 2014], this implies that

∑t−1
k=1G

π
k(bt, at) and

thus Qπt (b, a) are also submodular in a.

While the conditional independence of zk given sk is easy to satisfy, the conditional inde-
pendence of zt:k, a whole sequence of observations, given sk is more difficult. For zt:k to be
conditionally independent given sk, sk must contain enough information to predict the past
sequence of states st:k. One way to achieve this is by defining sk such that it encodes all the
information in the state history that is correlated with the observations zt:k. Unfortunately,
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this typically is not practical to do unless the transition function is deterministic and invertible.
However, note that the conditions required by Theorem 3 are only sufficient, not necessary,
conditions for the value function to be submodular. An important goal for future work is thus
to identify weaker conditions for establishing submodularity of value functions based on belief
entropy or other belief-based reward functions. As we show in Section 7, greedy PBVI per-
forms well in practice even when these conditions do not hold, which suggests that establishing
submodularity under weaker conditions may indeed be possible.

While Theorem 3 shows that QGt (b, a) is submodular, Theorem 2 also requires that it be
monotone, which we now establish.

Lemma 5. If V π
t is convex over the belief space for all t, then Qπt (b, a) is monotone in a, i.e.,

for all b and aM ⊆ aN , Qπt (b, aM ) ≤ Qπt (b, aN ).

Proof. By definition of Qπt (b, a),

Qπt (b, aM ) = [ρ(b) + γEzM |b,aMV
π
t−1(bzM ,aM )]. (32)

Since ρ(b) is independent of aM , we need only show that the second term is monotone in a. Let
aP = aN \ aM and

F πb (aN ) = EzN |b,aNV
π
t−1(bzN ,aN ). (33)

Since aN = {aM ∪ aP },

F πb (aN ) = E{zM ,zP }|b,{aM ,aP }V
π
t−1(b{zM ,zP },{aM ,aP }). (34)

Separating expectations,

F πb (aN ) = EzM |b,aMEzP |b,aP V
π
t−1(b{zM ,zP },{aM ,aP }) (35)

Applying Jensen’s inequality, since V π
t−1 is convex,

F πb (aN ) ≥ EzM |b,aMV
π
t−1(EzP |b,aP b

zM ,zP ,aM ,aP ) (36)

Since the expectation of the posterior is the prior,

F πb (aN ) ≥ EzM |b,aMV
π
t−1(bzM ,aM )

F πb (aN ) ≥ F πb (aM ).
(37)

Consequently, we have:

ρ(b) + γ(h−k)F πb (aN ) ≥ ρ(b) + γ(h−k)F πb (aM )

Qπt (b, aN ) ≥ Qπt (b, aM ).
(38)

Tying together our results so far:

Theorem 4. If zt:k is conditionally independent given sk, V π
t is convex over the belief space for

all t, π and ρ(b) = −Hb(s), then for all b,

V G
t (b) ≥ (1− e−1)2tV ∗t (b). (39)

Proof. Follows from Theorem 2, given QGt (b, a) is non-negative, monotone and submodular. For
ρ(b) = −Hb(s), it is easy to see that QGt (b, a) is non-negative, as entropy is always positive
[Cover and Thomas, 1991]. Theorem 3 showed that QGt (b, a) is submodular if ρ(b) = −Hb(s).
The monotonicity of QGt follows the fact that −Hb(s) is convex [Cover and Thomas, 1991]: since
Lemma ?? shows that BG preserves convexity, V G

t is convex if ρ(b) = −Hb(s); Lemma 5 then
shows that QGt (b, a) is monotone in a.



Section 6 Analysis: Approximate Belief Entropy 11

6 Analysis: Approximate Belief Entropy

While Theorem 4 bounds the error in V G
t (b), it does so only on the condition that ρ(b) = −Hb(s).

However, as discussed earlier, our definition of a dynamic sensor selection POMDP instead
defines ρ using a set of vectors Γρ = {αρ1, . . . , α

ρ
m}, each of which is a tangent to −Hb(s), as

suggested by [Araya et al., 2010], in order to preserve the PWLC property. While this can
interfere with the submodularity of Qπt (b, a), in this section we show that the error generated
by this approximation is still bounded in this case.

Let Ṽ ∗t denote the optimal value function when using a PWLC approximation to negative
entropy for the belief-based reward, as in a dynamic sensor selection POMDP. Araya et al. (2010)
showed that, if ρ(b) verifies the α-Hölder condition [Gilbarg and Trudinger, 2001], a generaliza-
tion of the Lipschitz condition, then the following relation holds between V ∗t and Ṽ ∗t :

||V ∗t − Ṽ ∗t ||∞ ≤
CδαB
1− γ

, (40)

where V ∗t is the optimal value function with ρ(b) = −Hb(s), δB is a measure of how well belief
entropy is approximated by the PWLC function, and C is a constant.

Let Ṽ G
t (b) be the value function computed by greedy PBVI for the dynamic sensor selection

POMDP.

Lemma 6. For all beliefs b, the error between V G
t (b) and Ṽ G

t (b) is bounded by
CδαB
1−γ . That is,

||V G
t − Ṽ G

t ||∞ ≤
CδαB
1−γ .

Proof. Follows exactly the strategy Araya et al. (2010) used to prove (40), which places no
conditions on π and thus holds as long as BG is a contraction mapping. Since for any policy
the Bellman operator Bπ defined as:

(BπVt−1)(b) = [ρ(b, aπ) + γ
∑
z∈Ω

Pr(z|aπ, b)Vt−1(bz,aπ)], (41)

is a contraction mapping [Bertsekas, 2007], the bound holds for Ṽ G
t .

Let η =
CδαB
1−γ and let ρ̃(b) denote the PWLC approximated belief-based reward and Q̃∗t (b, a) =

ρ̃(b) +
∑

z Pr(z|b, a)Ṽ ∗t−1(bz,a) denote the value of taking action a in belief b under an optimal

policy. Let Q̃Gt (b, a) be the action-value function computed by greedy PBVI for the dynamic
sensor selection POMDP. As mentioned before, it is not guaranteed that Q̃Gt (b, a) is submodular.
Instead, we show that it is ε-submodular :

Definition 2. The set function f(a) is ε-submodular in a, if for every aM ⊆ aN ⊆ A+, ae ∈
A+ \ aN and ε ≥ 0,

f(ae ∪ aM )− f(aM ) ≥ f(ae ∪ aN )− f(aN )− ε.

Lemma 7. If ||V π
t−1 − Ṽ π

t−1||∞ ≤ η, and Qπt (b, a) is submodular in a, then Q̃πt (b, a) is ε′-
submodular in a for all b, where ε′ = 4(γ + 1)η.

Proof. Since, ||V π
t−1 − Ṽ π

t−1||∞ ≤ η, then for all beliefs b,

V π
t−1(b)− Ṽ π

t−1(b) ≤ η, (42)

For a given a, on both sides multiply γ ≥ 0, take the expectation over z,

γEz|b,aV
π
t−1(b)− γEz|b,aṼ

π
t−1(b) ≤ γη (43)
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Since ρ(b)− ρ̃(b) ≤ η,

ρ(b)− ρ̃(b) + γEz|b,aV
π
t−1(b)− γEz|b,aṼ

π
t−1(b) ≤ γη + η (44)

Therefore for all b, a,

Qπt (b, a)− Q̃πt (b, a) ≤ (γ + 1)η (45)

Now since Qπt (b, a) is submodular, it satisfies the following equation,

Qπt (b, ae ∪ aM )−Qπt (b, aM ) ≥ Qπt (b, ae ∪ aN )−Qπt (b, aN ), (46)

for every aM ⊆ aN ⊆ A+, ae ∈ A+ \ aN For each action that appear in (46), that is, {ae ∪
aM}, aM , {ae ∪ aN} and aN , the value computed by Q̃πt for belief b will be an approximation
to Qπt . Thus the inequality in (46) that holds for Qπt , may not hold for Q̃πt . The worst case
possible is, for some combination of b, {ae ∪ aM}, aM , {ae ∪ aN}, Q̃πt (b, ae ∪ aM ) and Qπt (b, aN )
underestimates the true value of Qπt (b, ae ∪ aM ) and Q̃πt (b, aN ) by (γ + 1)η each and Q̃πt (b, aM )
and Q̃πt (b, ae ∪ aN ) overestimates the value of Qπt (b, aM ) and Qπt (b, ae ∪ aN ) by (γ + 1)η each.

The worse case described above can be written formally as:

Since Q̃πt (b, ae ∪ aM ) and Q̃πt (b, aN ) underestimates the value by (γ + 1)η,

Q̃πt (b, ae ∪ aM ) + (γ + 1)η = Qπt (b, ae ∪ aM )

Q̃πt (b, aN ) + (γ + 1)η = Qπt (b, aN )
(47)

Since Q̃πt (b, ae ∪ aN ) and Q̃πt (b, aM ) overestimates the value by (γ + 1)η,

Q̃πt (b, aM )− (γ + 1)η = Qπt (b, aM )

Q̃πt (b, ae ∪ aN )− (γ + 1)η = Qπt (b, ae ∪ aN )
(48)

Substituting these equations in (46),

Q̃πt (b, ae ∪ aM )− Q̃πt (b, aM ) ≥ Q̃πt (b, ae ∪ aN )− Q̃πt (b, aN )− 4(γ + 1)η. (49)

Lemma 8. If Q̃πt (b, a) is non-negative, monotone and ε-submodular in a, then

Q̃πt (b, aG) ≥ (1− e−1)Q̃πt (b, a∗)− 4χKε, (50)

where χK =
∑K−1

p=0 (1−K−1)p.

The proof for above theorem follows the same strategy as shown by [Krause and Guestrin,
2007]

Proof. Let a∗ be the optimal set of action features of size K, a∗ = arg maxa Q̃
π
t (b, a) and let

al be the greedily selected set of size l, that is, al = greedy-argmax(Q̃πt (b, ·), A+, l) Also, let
a∗ = {a∗1 . . . a∗K} be the elements of set a∗.
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Then,

By monotonicity of Q̃πt (b, a)

Q̃πt (b, a∗) ≤ Q̃πt (b, a∗ ∪ al)

Re-writing as a telescoping sum

= Q̃πt (b, al) +

K∑
j=1

∆Q̃b
(a∗j |al ∪ {a∗1 . . . a∗j−1})

Using (49)

≤ Q̃πt (b, al) +
K∑
j=1

∆Q̃b
(a∗j |al) + 4Kε

As al+1 is built greedily from al in order to maximize ∆Q̃b

≤ Q̃πt (b, al) +
K∑
j=1

(Q̃πt (b, al+1)− Q̃πt (b, al)) + 4Kε

As |a∗| = K

= Q̃πt (b, al) +K(Q̃πt (b, al+1)− Q̃πt (b, al)) + 4Kε

(51)

Let δl := Q̃πt (b, a∗) − Q̃πt (b, al), which allows us to rewrite above equation as: δl ≤ K(δl −
δl+1) + 4Kε.

Hence, δl+1 ≤ (1− 1
K )δl + 4ε.

Using this relation recursively, we can write, δK ≤ (1− 1
K )Kδ0 + 4

∑K−1
p=0 (1− 1

K )pε.

Also, δ0 = Q̃πt (b, a∗) − Q̃πt (b, a0) and using the inequality 1 − x ≤ e−x, we can write

δK ≤ e−
K
K Q̃πt (b, a∗) + 4

∑K−1
p=0 (1 −K−1)ε. Substituting δK and rearranging terms (Also χK =∑K−1

p=0 (1− 1
K )p).

Q̃πt (b, aK) ≥ (1− e−1)Q̃πt (b, a∗)− 4χKε

Q̃πt (b, aG) ≥ (1− e−1)Q̃πt (b, a∗)− 4χKε
(52)

Theorem 5. For all beliefs, the error between Ṽ G
t (b) and Ṽ ∗t (b) is bounded, if ρ(b) = −Hb(s),

V π
t is convex over the belief space for all t, π, and zt:k is conditionally independent given sk.

Proof. Theorem 4 shows that, if ρ(b) = −Hb(s), and zt:k is conditionally independent given sk,
then QGt (b, a) is submodular. Using Lemma 7, for V π

t = V G
t , Ṽ π

t = Ṽ G
t , Qπt (b, a) = QGt (b, a)

and Q̃πt (b, a) = Q̃Gt (b, a), it is easy to see that Q̃Gt (b, a) is ε-submodular. This satisfies one
condition of Lemma 8. The convexity of Ṽ G

t (b) follows from Lemma ?? and that ρ̃(b) is convex.
Given that Ṽ G

t (b) is convex, the monotonicity of Q̃Gt (b, a) follows from Lemma 5. Since ρ̃(b) is
non-negative, Q̃Gt (b, a) is non-negative too. Now we can apply Lemma 9 to prove that the error
generated by a one-time application of the greedy Bellman operator to Ṽ G

t (b), instead of the
Bellman optimality operator, is bounded. It is thus easy to see that the error between Ṽ G

t (b),
produced by multiple applications of the greedy Bellman operator, and Ṽ ∗t (b) is bounded for all
beliefs.

7 Experiments

To empirically evaluate greedy PBVI, we tested it on the problem of tracking either one or
multiple people using a multi-camera system. The problem was extracted from a real-world
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dataset collected in a shopping mall [Bouma et al., 2013]. The dataset was gathered over 4
hours using 13 CCTV cameras. Each camera uses a FPDW pedestrian detector [Dollár et al.,
2010] to detect people in each camera image and in-camera tracking [Bouma et al., 2013] to
generate tracks of the detected people’s movement over time. The dataset thus consists of 9915
tracks, each specifying one person’s x-y position throughout time. Figure 2 shows sample tracks
from all of the cameras.

To model this setting as a dynamic sensor selection POMDP, we discretize the continuous
x-y plane into C = 20 cells. The state s thus describes the person’s location and |S| = 21 (the
20 cells plus an ‘external’ state indicating the person has left the shopping mall). Using the
track data, we learned a maximum-likelihood tabular transition function. Since we do not have
ground truth data about people’s location, it is not possible to learn an observation function
from the tracks. Instead, we constructed an observation function by generating the false positive
and false negative probabilities randomly. For each camera and each cell in that camera’s region,
the probability of a false positive and false negative were set by sampling a number uniformly
randomly from the interval [0.15, 0.25]. The reward function is described as a set of |S| vectors,
Γρ = {α1 . . . α|S|}, with αi(s) = 1 if s = i and αi(s) = 0 otherwise. The initial belief is uniform
across all states. We planned for horizon h = 10 with γ = 0.99.

To address the blowup in the size of the state space for multi-person tracking, we use a
variant of transfer planning [Oliehoek et al., 2013]. We divide the multi-person problem into
several source problems, one for each person, and solve them independently to compute Vt(b) =∑
V i(bi), where V i(bi) is the value of the current belief bi about the i-th person’s location. Thus

V i
t (bi) only needs to be computed once, by solving POMDP of the same size as that in the single-

person setting. During action selection, Vt(b) is computed using the current bi for each person.
Computing Vt(b) as the linear combination of V i(bi) corresponds to the assumption that each
person’s movement is independent of that of other people. Although violated in practice, such
assumptions nonetheless often yield good approximations. In our setting, since this assumption
is applied to both regular and greedy PBVI, it allows a fair comparison of the two methods in
POMDPs with larger state spaces than would otherwise be not feasible.

As baselines, we tested against regular PBVI and myopic versions of both greedy and regular
PBVI that compute a policy assuming h = 1 and use it at each timestep.

Figure 2: Sample tracks for all the cameras. Each color represents all the tracks observed by a
given camera. The boxes denote regions of high overlap between cameras.
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Figure 3 shows runtimes under different values of N and K. Since multi-person tracking
uses the value function obtained by solving a single-person POMDP, single and multi-person
tracking have the same runtimes. These results demonstrate that greedy PBVI requires only a
fraction of the computational cost of regular PBVI. In addition, the difference in runtime grows
quickly as the action space gets larger: for N = 5 and K = 2 greedy PBVI is twice as fast, while
for N = 11,K = 3 it is approximately nine times as fast. Thus, greedy PBVI enables much
better scalability in the action space.

Figure 3: Runtimes for the different methods.

Figure 4, which shows the cumulative reward under different values of N and K for single-
person (left) and multi-person (right) tracking, verifies that greedy PBVI’s speedup does not
come at the expense of performance, as greedy PBVI accumulates nearly as much reward as
regular PBVI. They also show that both PBVI and greedy PBVI benefit from non-myopic
planning. While the performance advantage of non-myopic planning is relatively modest, it
increases with the number of cameras and people, which suggests that non-myopic planning is
important to making active perception scalable.

Figure 4: Cumulative reward for single-person (left) and multi-person (right) tracking.

Furthermore, an analysis of the resulting policies showed that myopic and non-myopic policies
differ qualitatively. A myopic policy, in order to minimise uncertainty in the next step, tends to
look where it believes the person to be. By contrast, a non-myopic policy tends to proactively
look where the person might go next, so as to more quickly detect her new location when she
moves. Consequently, non-myopic policies exhibit less fluctuation in belief and accumulate more
reward, as illustrated in Figure 5. The blue lines marks when the agent happens to choose the
camera which can observe the cell occupied by the person. The red line plots the max of the
agent’s belief. The difference in fluctuation in belief is evident from the figure as the max of the
belief often drops below 0.5 for the myopic policy but rarely does so for the non-myopic policy.
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Figure 5: Behaviour of myopic vs. non-myopic policy.

8 Related Work

Dynamic sensor selection has been studied in many contexts. Most work focuses on either open-
loop or myopic solutions, e.g., [Kreucher et al., 2005, Williams et al., 2007, Joshi and Boyd,
2009]. By contrast, our POMDP-approach enables a closed-loop, non-myopic approach that can
lead to better performance when the underlying state of the world changes over time.

Spaan (2008) and Spaan and Lima (2009) also consider a POMDP approach to dynamic
sensor selection. However, they apply their method only to small POMDPs without addressing
scalability with respect to the action space. Such scalability, which greedy PBVI makes possible,
is central to the practical utility of POMDPs for sensor selection. Other work using POMDPs
for sensor selection [Krishnamurthy and Djonin, 2007, Ji et al., 2007] also does not consider
scalability in the action space. Krishnamurthy and Djonin (2007) consider a non-standard
POMDP in which, unlike in our setting, the reward is not linear in the belief.

In recent years, applying greedy maximization to submodular functions has become a popular
and effective approach to sensor selection [Krause and Guestrin, 2005, 2007]. However, such work
focuses on myopic or fully observable settings [Kumar and Zilberstein, 2009] and thus does not
enable the long-term planning required to cope with dynamic state in a POMDP.

Adaptive submodularity [Golovin and Krause, 2011] is a recently developed extension that
addresses these limitations by allowing action selection to condition on previous observations.
However, it assumes a static state and thus cannot model the dynamics of a POMDP across
timesteps. Therefore, in a POMDP, adaptive submodularity is only applicable within a timestep,
during which state does not change but the agent can sequentially add sensors to a set. In prin-
ciple, adaptive submodularity could enable this intra-timestep sequential process to be adaptive,
i.e., the choice of later sensors could condition on the observations generated by earlier sensors.
However, this is not possible in our setting because we assume that, due to computational costs,
all sensors must be selected simultaneously. Consequently, our analysis considers only classic,
non-adaptive submodularity.

To our knowledge, our work is the first to establish the submodularity of POMDP value
functions for dynamic sensor selection POMDPs and thus leverage greedy maximization to
scalably compute bounded approximate policies for dynamic sensor selection modeled as a full
POMDP.

9 Conclusions & Future Work

This paper proposed greedy PBVI, a new POMDP planning method for dynamic sensor selec-
tion that exploits greedy maximization to improve scalability in the action space. We showed
that the value function computed in this way has bounded error if certain conditions includ-
ing submodularity are met. We also showed that such conditions are met, or approximately
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met, if reward is defined using negative belief entropy or an approximation thereof. Experi-
ments on a real-world dataset from a multi-camera tracking system show that it achieves similar
performance to existing methods but incurs only a fraction of the computational cost.

One avenue for future work includes quantifying the error bound between Ṽ G
t (b) and Ṽ ∗t (b),

as our current results (Theorem 5) show only that it is bounded. We also intend to consider
cases where its possible to sequentially process information from sensors and thus integrate our
approach with adaptive submodularity.
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